https://mp.weixin.qq.com/s/XUj1t8EdNVZL070ASf3IRw

sql语句的执行顺序:


FROM
<left_table>

ON
<join_condition>

<join_type>
 JOIN
<right_table>

WHERE
<where_condition>

GROUP BY
<group_by_list>

HAVING
<having_condition>

SELECT

DISTINCT
<select_list>

ORDER BY
<order_by_condition>

LIMIT
<limit_number>

1、LIMIT 语句
分页查询是最常用的场景之一,但也通常也是最容易出问题的地方。比如对于下面简单的语句,一般 DBA 想到的办法是在 type, name, create_time 字段上加组合索引。这样条件排序都能有效的利用到索引,性能迅速提升。


SELECT *
FROM   operation
WHERE  type = 'SQLStats'
       AND name = 'SlowLog'
ORDER  BY create_time
LIMIT  1000, 10;

好吧,可能90%以上的 DBA 解决该问题就到此为止。但当 LIMIT 子句变成 “LIMIT 1000000,10” 时,程序员仍然会抱怨:我只取10条记录为什么还是慢?

要知道数据库也并不知道第1000000条记录从什么地方开始,即使有索引也需要从头计算一次。出现这种性能问题,多数情形下是程序员偷懒了。

在前端数据浏览翻页,或者大数据分批导出等场景下,是可以将上一页的最大值当成参数作为查询条件的。SQL 重新设计如下:


SELECT   *
FROM     operation
WHERE    type = 'SQLStats'
AND      name = 'SlowLog'
AND      create_time > '2017-03-16 14:00:00'
ORDER BY create_time limit 10;

在新设计下查询时间基本固定,不会随着数据量的增长而发生变化。

2、隐式转换
SQL语句中查询变量和字段定义类型不匹配是另一个常见的错误。比如下面的语句:


mysql> explain extended SELECT *
     > FROM   my_balance b
     > WHERE  b.bpn = 14000000123
     >       AND b.isverified IS NULL ;
mysql> show warnings;
| Warning | 1739 | Cannot use ref access on index 'bpn' due to type or collation conversion on field 'bpn'

其中字段 bpn 的定义为 varchar(20),MySQL 的策略是将字符串转换为数字之后再比较。函数作用于表字段,索引失效。

上述情况可能是应用程序框架自动填入的参数,而不是程序员的原意。现在应用框架很多很繁杂,使用方便的同时也小心它可能给自己挖坑。

3、关联更新、删除
虽然 MySQL5.6 引入了物化特性,但需要特别注意它目前仅仅针对查询语句的优化。对于更新或删除需要手工重写成 JOIN。

比如下面 UPDATE 语句,MySQL 实际执行的是循环/嵌套子查询(DEPENDENT SUBQUERY),其执行时间可想而知。


UPDATE operation o
SET    status = 'applying'
WHERE  o.id IN (SELECT id
                FROM   (SELECT o.id,
                               o.status
                        FROM   operation o
                        WHERE  o.group = 123
                               AND o.status NOT IN ( 'done' )
                        ORDER  BY o.parent,
                                  o.id
                        LIMIT  1) t);

执行计划:

+—-+——————–+——-+——-+—————+———+———+——-+——+—————————————————–+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+—-+——————–+——-+——-+—————+———+———+——-+——+—————————————————–+
| 1 | PRIMARY | o | index | | PRIMARY | 8 | | 24 | Using where; Using temporary |
| 2 | DEPENDENT SUBQUERY | | | | | | | | Impossible WHERE noticed after reading const tables |
| 3 | DERIVED | o | ref | idx_2,idx_5 | idx_5 | 8 | const | 1 | Using where; Using filesort |
+—-+——————–+——-+——-+—————+———+———+——-+——+—————————————————–+

重写为 JOIN 之后,子查询的选择模式从 DEPENDENT SUBQUERY 变成 DERIVED,执行速度大大加快,从7秒降低到2毫秒。


UPDATE operation o
       JOIN  (SELECT o.id,
                            o.status
                     FROM   operation o
                     WHERE  o.group = 123
                            AND o.status NOT IN ( 'done' )
                     ORDER  BY o.parent,
                               o.id
                     LIMIT  1) t
         ON o.id = t.id
SET    status = 'applying'

执行计划简化为:

+—-+————-+——-+——+—————+——-+———+——-+——+—————————————————–+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+—-+————-+——-+——+—————+——-+———+——-+——+—————————————————–+
| 1 | PRIMARY | | | | | | | | Impossible WHERE noticed after reading const tables |
| 2 | DERIVED | o | ref | idx_2,idx_5 | idx_5 | 8 | const | 1 | Using where; Using filesort |
+—-+————-+——-+——+—————+——-+———+——-+——+—————————————————–+

4、混合排序
MySQL 不能利用索引进行混合排序。但在某些场景,还是有机会使用特殊方法提升性能的。


SELECT *
FROM   my_order o
       INNER JOIN my_appraise a ON a.orderid = o.id
ORDER  BY a.is_reply ASC,
          a.appraise_time DESC
LIMIT  0, 20

执行计划显示为全表扫描:

+—-+————-+——-+——–+————-+———+———+—————+———+-+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra
+—-+————-+——-+——–+————-+———+———+—————+———+-+
| 1 | SIMPLE | a | ALL | idx_orderid | NULL | NULL | NULL | 1967647 | Using filesort |
| 1 | SIMPLE | o | eq_ref | PRIMARY | PRIMARY | 122 | a.orderid | 1 | NULL |
+—-+————-+——-+——–+———+———+———+—————–+———+-+

由于 is_reply 只有0和1两种状态,我们按照下面的方法重写后,执行时间从1.58秒降低到2毫秒。


SELECT *
FROM   ((SELECT *
         FROM   my_order o
                INNER JOIN my_appraise a
                        ON a.orderid = o.id
                           AND is_reply = 0
         ORDER  BY appraise_time DESC
         LIMIT  0, 20)
        UNION ALL
        (SELECT *
         FROM   my_order o
                INNER JOIN my_appraise a
                        ON a.orderid = o.id
                           AND is_reply = 1
         ORDER  BY appraise_time DESC
         LIMIT  0, 20)) t
ORDER  BY  is_reply ASC,
          appraisetime DESC
LIMIT  20;

5、EXISTS语句
MySQL 对待 EXISTS 子句时,仍然采用嵌套子查询的执行方式。如下面的 SQL 语句:


SELECT *
FROM   my_neighbor n
       LEFT JOIN my_neighbor_apply sra
              ON n.id = sra.neighbor_id
                 AND sra.user_id = 'xxx'
WHERE  n.topic_status < 4
       AND EXISTS(SELECT 1
                  FROM   message_info m
                  WHERE  n.id = m.neighbor_id
                         AND m.inuser = 'xxx')
       AND n.topic_type <> 5

执行计划为:

+—-+——————–+——-+——+—–+——————————————+———+——-+———+ —–+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+—-+——————–+——-+——+ —–+——————————————+———+——-+———+ —–+
| 1 | PRIMARY | n | ALL | | NULL | NULL | NULL | 1086041 | Using where |
| 1 | PRIMARY | sra | ref | | idx_user_id | 123 | const | 1 | Using where |
| 2 | DEPENDENT SUBQUERY | m | ref | | idx_message_info | 122 | const | 1 | Using index condition; Using where |
+—-+——————–+——-+——+ —–+——————————————+———+——-+———+ —–+

去掉 exists 更改为 join,能够避免嵌套子查询,将执行时间从1.93秒降低为1毫秒。


SELECT *
FROM   my_neighbor n
       INNER JOIN message_info m
               ON n.id = m.neighbor_id
                  AND m.inuser = 'xxx'
       LEFT JOIN my_neighbor_apply sra
              ON n.id = sra.neighbor_id
                 AND sra.user_id = 'xxx'
WHERE  n.topic_status < 4
       AND n.topic_type <> 5

新的执行计划:

+—-+————-+——-+——–+ —–+——————————————+———+ —–+——+ —–+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+—-+————-+——-+——–+ —–+——————————————+———+ —–+——+ —–+
| 1 | SIMPLE | m | ref | | idx_message_info | 122 | const | 1 | Using index condition |
| 1 | SIMPLE | n | eq_ref | | PRIMARY | 122 | ighbor_id | 1 | Using where |
| 1 | SIMPLE | sra | ref | | idx_user_id | 123 | const | 1 | Using where |
+—-+————-+——-+——–+ —–+——————————————+———+ —–+——+ —–+

6、条件下推
外部查询条件不能够下推到复杂的视图或子查询的情况有:

1、聚合子查询;2、含有 LIMIT 的子查询;3、UNION 或 UNION ALL 子查询;4、输出字段中的子查询;

如下面的语句,从执行计划可以看出其条件作用于聚合子查询之后:


SELECT *
FROM   (SELECT target,
               Count(*)
        FROM   operation
        GROUP  BY target) t
WHERE  target = 'rm-xxxx'

+—-+————-+————+——-+—————+————-+———+——-+——+————-+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+—-+————-+————+——-+—————+————-+———+——-+——+————-+
| 1 | PRIMARY | | ref | | | 514 | const | 2 | Using where |
| 2 | DERIVED | operation | index | idx_4 | idx_4 | 519 | NULL | 20 | Using index |
+—-+————-+————+——-+—————+————-+———+——-+——+————-+

确定从语义上查询条件可以直接下推后,重写如下:


SELECT target,
       Count(*)
FROM   operation
WHERE  target = 'rm-xxxx'
GROUP  BY target

执行计划变为:

+—-+————-+———–+——+—————+——-+———+——-+——+——————–+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+—-+————-+———–+——+—————+——-+———+——-+——+——————–+
| 1 | SIMPLE | operation | ref | idx_4 | idx_4 | 514 | const | 1 | Using where; Using index |
+—-+————-+———–+——+—————+——-+———+——-+——+——————–+

关于 MySQL 外部条件不能下推的详细解释说明请参考以前文章:MySQL · 性能优化 · 条件下推到物化表 http://mysql.taobao.org/monthly/2016/07/08

7、提前缩小范围
先上初始 SQL 语句:


SELECT *
FROM   my_order o
       LEFT JOIN my_userinfo u
              ON o.uid = u.uid
       LEFT JOIN my_productinfo p
              ON o.pid = p.pid
WHERE  ( o.display = 0 )
       AND ( o.ostaus = 1 )
ORDER  BY o.selltime DESC
LIMIT  0, 15

该SQL语句原意是:先做一系列的左连接,然后排序取前15条记录。从执行计划也可以看出,最后一步估算排序记录数为90万,时间消耗为12秒。

+—-+————-+——-+——–+—————+———+———+—————–+——–+—————————————————-+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+—-+————-+——-+——–+—————+———+———+—————–+——–+—————————————————-+
| 1 | SIMPLE | o | ALL | NULL | NULL | NULL | NULL | 909119 | Using where; Using temporary; Using filesort |
| 1 | SIMPLE | u | eq_ref | PRIMARY | PRIMARY | 4 | o.uid | 1 | NULL |
| 1 | SIMPLE | p | ALL | PRIMARY | NULL | NULL | NULL | 6 | Using where; Using join buffer (Block Nested Loop) |
+—-+————-+——-+——–+—————+———+———+—————–+——–+—————————————————-+

由于最后 WHERE 条件以及排序均针对最左主表,因此可以先对 my_order 排序提前缩小数据量再做左连接。SQL 重写后如下,执行时间缩小为1毫秒左右。


SELECT *
FROM (
SELECT *
FROM   my_order o
WHERE  ( o.display = 0 )
       AND ( o.ostaus = 1 )
ORDER  BY o.selltime DESC
LIMIT  0, 15
) o
     LEFT JOIN my_userinfo u
              ON o.uid = u.uid
     LEFT JOIN my_productinfo p
              ON o.pid = p.pid
ORDER BY  o.selltime DESC
limit 0, 15

再检查执行计划:子查询物化后(select_type=DERIVED)参与 JOIN。虽然估算行扫描仍然为90万,但是利用了索引以及 LIMIT 子句后,实际执行时间变得很小。

+—-+————-+————+——–+—————+———+———+——-+——–+—————————————————-+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+—-+————-+————+——–+—————+———+———+——-+——–+—————————————————-+
| 1 | PRIMARY | | ALL | NULL | NULL | NULL | NULL | 15 | Using temporary; Using filesort |
| 1 | PRIMARY | u | eq_ref | PRIMARY | PRIMARY | 4 | o.uid | 1 | NULL |
| 1 | PRIMARY | p | ALL | PRIMARY | NULL | NULL | NULL | 6 | Using where; Using join buffer (Block Nested Loop) |
| 2 | DERIVED | o | index | NULL | idx_1 | 5 | NULL | 909112 | Using where |
+—-+————-+————+——–+—————+———+———+——-+——–+—————————————————-+

8、中间结果集下推
再来看下面这个已经初步优化过的例子(左连接中的主表优先作用查询条件):


SELECT    a.*,
          c.allocated
FROM      (
              SELECT   resourceid
              FROM     my_distribute d
                   WHERE    isdelete = 0
                   AND      cusmanagercode = '1234567'
                   ORDER BY salecode limit 20) a
LEFT JOIN
          (
              SELECT   resourcesid, sum(ifnull(allocation, 0) * 12345) allocated
              FROM     my_resources
                   GROUP BY resourcesid) c
ON        a.resourceid = c.resourcesid

那么该语句还存在其它问题吗?不难看出子查询 c 是全表聚合查询,在表数量特别大的情况下会导致整个语句的性能下降。

其实对于子查询 c,左连接最后结果集只关心能和主表 resourceid 能匹配的数据。因此我们可以重写语句如下,执行时间从原来的2秒下降到2毫秒。


SELECT    a.*,
          c.allocated
FROM      (
                   SELECT   resourceid
                   FROM     my_distribute d
                   WHERE    isdelete = 0
                   AND      cusmanagercode = '1234567'
                   ORDER BY salecode limit 20) a
LEFT JOIN
          (
                   SELECT   resourcesid, sum(ifnull(allocation, 0) * 12345) allocated
                   FROM     my_resources r,
                            (
                                     SELECT   resourceid
                                     FROM     my_distribute d
                                     WHERE    isdelete = 0
                                     AND      cusmanagercode = '1234567'
                                     ORDER BY salecode limit 20) a
                   WHERE    r.resourcesid = a.resourcesid
                   GROUP BY resourcesid) c
ON        a.resourceid = c.resourcesid

但是子查询 a 在我们的SQL语句中出现了多次。这种写法不仅存在额外的开销,还使得整个语句显的繁杂。使用 WITH 语句再次重写:

WITH a AS
(
         SELECT   resourceid
         FROM     my_distribute d
         WHERE    isdelete = 0
         AND      cusmanagercode = '1234567'
         ORDER BY salecode limit 20)
SELECT    a.*,
          c.allocated
FROM      a
LEFT JOIN
          (
                   SELECT   resourcesid, sum(ifnull(allocation, 0) * 12345) allocated
                   FROM     my_resources r,
                            a
                   WHERE    r.resourcesid = a.resourcesid
                   GROUP BY resourcesid) c
ON        a.resourceid = c.resourcesid
文档更新时间: 2023-09-29 10:32   作者:admin